Siemens Successful Digital Transformation (Part 3 ) – 14 – by Space Dreamer M.Temel Aygun

My penguin by Reha Mustecaplıoğlu –


  1. Instituted a culture for the digital age by 
    1. Selecting the team of venture and  software developers based on parameters that included openness  
    1. Locating the team in a different building and holding the training in a distant location to preserve the culture and remain untouched by corporate routines
  2. Led and built the right teams by 
    1. Backing all the software developers in the training phase and thus generating a great success story on a new approach on their return  
    1. Having a right mix of juniority and  experience for the team of venture  developers – junior venture developers brought the drive and passion for technology, while experienced ones brought the necessary expertise. In this case, in fact, a junior venture developer with around  five years of work experience was elected  the Managing Director because of his unparalleled contribution to the unit 
    1. Giving some of the software developers additional administrative roles in the unit since they became role models and experts in agile methods 
  3. Leveraged agile training methods such as eXtreme Programming (XP) by 
    1. Having a developer and a trainer sit side-byside in front of a computer for live coaching on software development for quick results 
    1. Moving away from theoretical passive training to interactive feedback-based live sessions involving all key stakeholders  such as customers and partners


A large industrial supplier was developing its Internet of Things (IoT) operating system. Given its global footprint of functions, the project had 50+ teams spread across 10+ sites worldwide. The Change Management team was set up right at conception and had a flat hierarchy of 10 project managers representing each of the 10 functions, a project COO and a project CEO.


Rules for delegation of authority were defined for the functional personnel to make quick decisions or escalate to the project COO/CEO, who provided an integrated view across functions on top of coaching the project managers. The team used a digital communication tool for rapid communication across functions and to disseminate information deep within the organization.

Due to the volatile nature of the project where “plans created at 8:00 am were obsolete by 8:30 am,” the flat hierarchy with quick decision making was critical to the successful launch of the operating system. Post launch, many of the change team members were given managerial responsibilities in the new department that owned the operating system.

To establish a culture of self-development for newly required skills, a program that covered the total cost for an online master’s degree in computer science was launched for every employee, from software developers to functional and managerial staff. Incentives were introduced including a 5-digit cash bonus, a guaranteed 15% raise and a stock grant on successful completion of the course.


  1. Led and built the right teams by  
    1. Organizing teams in a flat hierarchy for  fast information flow to facilitate decisions 
    1. Having more experienced personnel to manage cross-functional topics 
    1. Empowering personnel closer to the information with the authority to make decisions 
    1. Analyzing and empathizing with personnel  in case of suboptimal decision making 
  2. Leveraged instant communication by 
    1. Using modern digital tools – Yammer, WhatsApp, James, Poll Everywhere for messaging; Circuit, Zoom for virtual  conferencing, etc. – for interaction at  a team or one-to-one level
  3. Established a learning organization by 
    1. Setting the right incentives to foster  curiosity for seminal topics and tools


A leading energy equipment supplier had automated the gas turbine part design process by leveraging big data and AI. The AI algorithm would identify design improvements for the components to further increase the efficiency and life of the turbine. This would expedite the existing process – which was largely manually driven by engineers – to significantly improve time-tomarket and reduce costs. However, given the company’s quality obsession, the engineers weren’t quite sure of the algorithm’s effectiveness. They perceived the automated process to be an 80/20 approach with lower quality compared to the existing lengthy, human-driven process. Additionally, they feared job losses due to autonomous operations. This led to significant resistance in implementing the initiative.


Subsequently, the company adopted a new approach. A 3-day workshop was conducted in which “coaches” – selected engineers who were role models to the rest and showed openness to change – were shown the company-wide digital strategy and how it was critical to remaining relevant in the market. Also, they were shown new job roles that would emerge post transformation with a roadmap for their development. The discussions were interactive and their preference for future job roles was sought. Since these roles would upgrade the engineers’ productivity and skills, they were an attractive proposition.

Additionally, “translators” – personnel who had a mix of experience in design, business, technology, and human resources – were included in the change team. The “translators” were able to bridge the communication gap between the change team and “coaches” to facilitate a common understanding. Once the “coaches” had all their doubts addressed, they went back and communicated their stories to the others. This completely turned around the mood in the engineering teams and many of them proactively contributed to a successful launch of the algorithm.


  1. Built and led the right teams by 
    1. Identifying “coaches” who were role models to the engineers and showed openness to change, and “translators” who had a mix of experience in design, business, technology, and human resources; translators were typically junior employees with 6-8 years  of experience 
    1. Providing transparency, empathizing with and listening to the opinions of operational staff, instead of top-down execution 
    1. Communicating benefits to the engineers that would arise out of more productive roles in the future as well as empowering them to choose their future roles
  2. Managed transition to new roles by  
    1. Providing complete clarity on future roles and a training roadmap for the engineers to fill in those roles


A successful digital transformation journey requires you to  not only set the right sails and embrace the safety of a solid  boat hull, you also have to steer your organization in the desired direction. Integrated Change Management, both agile and digitally adapted, will ensure you hold the course – even in troubled waters. These are our key recommendations to  help you navigate:

  1. INSTITUTE AN INTEGRATED APPROACH TO CHANGE MANAGEMENT : Change Management is crucial for creating acceptance. Include Change Management as early as the conceptualization phase of a digital vision instead of waiting until implementation. Don’t treat it as a separate workstream operating independently from the other ones. It needs to be an overarching element in your digital transformation. Set up an Executive Action Team to gain commitment from top management, buy-in from operational staff and effective integration across functions and departments. When it comes to technology and process decisions, always consider the effects on existing social interactions.
  2. LIVE AN AGILE CHANGE MANAGEMENT APPROACH : Setting up a flexible process for concept and strategy development allows you to continually adapt by incorporating acquired knowledge during the conceptualization and implementation phases. An iterative feedback approach not only gives you insights but allows you to react quickly. You should carry out pilot tests as early as possible for the same reason. Proactively anticipating human reactions and modifying change measures will also help you remain effective. To account for these uncertain and volatile aspects, define agile KPIs and trade off with classic business KPIs.
  3. ADAPT CLASSIC CHANGE MANAGEMENT LEVERS TO THE CONTEXT OF DIGITALIZATION : During change, employees look to their leaders for clarity, connection, and accountability. Leadership should, therefore, be proactively involved, transparent, collaborative and empathetic during the entire transformation journey. Set up project teams with flat hierarchies and a good mix of juniority and experience. Personnel closest to information should have the authority to make quick and informed decisions. Encouraging staff members who are open to change to be role models and coach their colleagues will further create buy-in, as will personnel with cross-topic experience functioning as “translators”. Live the transformation by using communication and collaboration tools: Be digital in your interactions with existing and new, internal and external stakeholders. Inclusive, hands-on and practical training methods such as live demonstrations with customers and partners will strengthen involvement. With the right policies and incentives, you can institute a culture of continuous improvement.

While these recommendations will go far in charting your course, each journey is unique. Your specific challenges should be met with individual solutions. Let’s set sail together for a smooth ride on the high seas of digital transformation.


Kadıköy, İstanbul – TURKEY

Author: M. Temel AYGÜN, Ph. D. in Aerospace Eng.

Copyright belongs to Author.

Korona sonrası olacaklar / 3D Yazıcı mı ? – 5 – by Futurist Numan Bayrak

60 yıllık dostluklar arasına korona girebilir mi ? Darıca Toto Ali Özdinçer , İbrahim Güven ve Ben

Sosyal izalosyon bireyselleşmeyi artıracak diye bekleniyor.Çoğunluk salgın korkusundan daha bireysel yaşamayı , izole alanlar yaratmayı , buna uygun spor dallarına yönelmeyi düşünmeye başlamış olabilir.

Sosyal mesafe koyma zorunluluğu yaşamımızda sanal sosyal mesafeyi hızla azalttı. Bilgisayar ve akıllı telefon satışları patladı. Daha önce whatsapp, facebook gruplarına girmeyen, girmeyi zaman kaybı olarak gören bir çok kişi, birden bu grupların fanatik tarafları olmak durumunda kaldılar.

Bireyselleşme fiziki yaşam koşullarında değişiklikler yaratsada, insani ilişkileri beklenmedik şekilde geliştirmek için fırsatlar yarattı. Bu arada birlikte yaşamanın zorlukları ve sorunları nedeniyle bağımsız yaşamayı seçen bir çok kişi ,diğer insanlara olan ihtiyacı ve ailesine olan bağları hatırlamak zorunda kaldı.

İlk başlarda hafif bir travmatik bir ortam gibi görünsede , bu zorunlu karantina günleri boyunca , birlikte yaşama zorunluluğu bir çoğumuza iyi bir ders oldu, olmaya devam ediyor.

Başta yakınlarını kaybetme korkusu , ailemizin unuttuğumuz değerini hatırlamamızı sağladı. Her akşam yedi haberlerinde ki korona tablosuna bakıp yaşadığına şükreden ve sevdiklerine bir daha bir daha sarılmak isteyen insanlar için unutulmaz anılar ve deneyimler yaşandı, yaşanıyor.

Evet fotoğrafta sorduğum gibi , böyle dostlukların arasına korona girebilir mi ? Tam aksine sanal dijital olanaklar bizi her gün hatta her saat çevrimiçi ( Online) görüşmemizi sağladı. Sabah günaydın ile başlayan sohbetler , öğlen ne pişirildiğine, bahçeye ekim yapmadan yeni doğan torunların sevilmesine, akşam yemeği sonrası ortak kahve içmekten ortak müzik dinlemeye uzanan yeni bir normal oluştu. Her musibetin iyi bir yanı olur derler zaten, bunu yaşıyoruz.

Şimdi bu yeni normal yeni sosyal ilişki bizi dijital aletleri ve uygulamaları kullanmayı normalleştirdi. 80 yaşında annem whatsapptan görüntülü konuşmaya başladı ve son 10 yıldır görememekten şikayet ettiği bütün arkadaş ve akrabalarını her gün arar ve görüşür oldu. Yetmedi fotoğraf çekip yaptığı örgüleri ve yetiştirdiği sebzeleri paylaşmaya başladı. Kendi facebook sayfasını kurduk ve kullanmaya başladı.

Komşumuzun ev alışverişi İstanbul’daki çocukları tarafından yapılmaya, komşumuzda whatsapp ve facebook sayfalarını açarak canlı olarak torunlarıyla , çocuklarıyla konuşurken , Kastamonu Cide’deki ilkokul arkadaşlarını bulmaya başladı.

Bu hızlı ve çok sıkı yakın çevrimiçi (online) ilişki hem insanlara bireysel özgürlük kazandırdı ve kazandırıyor hemde ilginç bir şekilde de daha sosyal olmasını sağlıyor. Konuşurken, otururken poz verirken daha dikkatli, sabırlı ve farklılıklara daha açık olmayı getiriyor.

Bu bireysel veya aile birimi olarak sosyal izolasyon içinde olanlara hizmet yani tedarik zinciri yöntemleride değişiyor ve değişecek.

Seyyar 3D yazıcılar sokaklarda ” 3D yazıcı ayağınıza geldiiii ” diye bağıracaklar. Bilgisayardan kendi tasarımını yaptığımız ürünleri anında kapımızda üretip bize verecekler.

Seyyar 3D Yazıcılar ( M3DP- Mobile3D Printer ) gıda , plastik, metal gibi alanlarda uzmanlaşacaklar.

Gıda 3D yazıcılar , kapınızda istediğiniz lahmacunu üretip verecekler.

Bu arada 3D Yazıcı Hammadde toptancıları ile hammadde dağıtımı ayrı bir iş kolu olarak gelişecek. Bu toptancılar ve tedarikçiler hem bu seyyar 3D yazıcılara malzeme verecekler hemde velerinde 3D Yazıcı bulundurmaya başlayan tüketicilere servis verecekler.

Başlarda , 1970 lerde olduğu gibi apartmanda 1 kişide 3D yazıcı olacak ve komşular olarak ona gidip tasarımını yaptığımız veya tasarımını satın aldığımız ürünü yazdıracağız.

Yeni apartmanlarda ortak kullanım alanlarında , 3D Yazıcı odaları olacak.

Bir çok yeni akıllı evlerde mutfaklarda ankastre fırın yanında 3D yazıcı standart olarak olacak.

3D yazıcı için tasarım evleri veya evlerinde tasarım yapan insanlar çoğalacak. Ve üstelik pizza tarifini italyan ustasından alacağız , Şusiyide Japon ahçıdan.

3D yazıcı bayileri ve servisleri ile 3D uzman ve ustaları yeni ve çok aranan meslekler olacak. Ev veya apartman toplantılarında , komşunun 3D yazı uzmanı olan oğlunu veya kızını davet edeceğiz.

3D ilaç yazıcılar her eczanede bulunan standart bir alet olacaklar. Aynen daha önce olduğu gibi eczacılar verilen karışımla ilaçları üretip hastalarına verecekler. ilaç karışımı ve formülleri aile hekimleri tarafından yazılacaklar zaten. Bu sayede elde edilecek ilaç tasarrufu ile bu yeni teknolojinin finansmanı daha kolay olacak.

3D İlaç yazıcıları muhtemelen var olan büyük ilaç firmaları kendi markalarıyla ürettirip, eczane ve hastanelere dağıtacaklar. Bu firmalar patentlerini ellerinde tuttukları ilaç formülleri ile malzeme tedariğinden kazanacaklar.

Burada elde edilecek tasarruf , yani daha az ambalaj daha az nakliye daha az aracı ile Ar-Ge ye daha fazla kaynak aktarılacak.

3D uzuv ve organ yazıcılar öyle yaygın olacakki , her halk sağlığı veya hastanede anında 3D yazıcıdan gerekli olan uzuv veya organ üretilecek.

Yazılımından donanımına konusunda uzman insanlardan kullanıcılara yeni normal 3D yazıcılarla hepimize farklı bir dünya sunacak.

Ben mi ne yapacağım ? Mesela ikinci universitede hukuk okuyorum ve bu sene 2 yıllık diplomamı İstanbul Universitesi Adalet Yüksek Okulundan alıyorum. Belkide 3D yazıcı tüketici veya üretici hakları ile ortaya çıkacak yeni normal anlaşmazlıkların çözümünde uzmanlaşacağım.!!

Aramıza 3D yazıcı girdi,

3D yazıcı icad edildi , tüketici yeniden yeniden kral oldu,

3D yazıcın kadar özgürsün

gibi yeni atasözleri duyar olacağız.

Sosyal izolasyondan sıkı çevrimiçi sürekli ilişikiye hoş geldiniz.

Altınova, Ayvalık, Balıkesir, Türkiye


Author/ Yazan :Numan Bayrak

Copyright belongs to author.

Siemens Successful Digital Transformation (Part 2 ) – 13 – by Space Dreamer M.Temel Aygun

The following cases give you a deeper insight into how we applied aspects of our Integrated Change Management approach aligned with its three imperatives.



A large industrial goods conglomerate developed and unveiled a digital transformation plan to its employees. However, post announcement, the company ran into several roadblocks during implementation. Operational staff were either confused or did not fully believe in the vision, some departments started making changes in silos without considering the effects across the organization, talent was not available to fill in new roles, and approvals from labor unions were hard to come by, to name just a few challenges. This led to major implementation delays, leading in turn to higher investment costs with later realization of benefits, thus significantly reducing the expected return on investment. In short, the conglomerate did not sufficiently consider the “people” side of the undertaking.


In its next wave of digital transformation, the conglomerate took a different approach. It learned from its earlier experience and met transformation expectations.


  1. Establish a cross-functional Executive Action Team (EAT) composed of business/product leaders, key influencers and company role models including both leaders and key operational staff. This team was involved from concept development to implementation, which ensured
    1. Buy-in from operational staff  
    1. Effective integration across functions/department 
    1. Deeper involvement of company leadership throughout
  2. Consider Change Management right from the start of the transformation beginning with concept development. It was an integral part of all the business and technology considerations, resulting in 
    1. Transparency on all operational constraints for technology, process and people 
    1. Clarity on the impact across technology, process and people. Hence, leadership was better prepared with analyses to answer queries from operational staff 
    1. Concept phase deliverables for not just technology and process, but also for  people – with transparency on future roles and a roadmap for development, resulting  in less anxiety at the operational level



A cement manufacturer drove major digitalization initiatives across its organization with significant investments. One such initiative included partially automating operations by using sensors, data analytics applications and remote commands managed in the cloud. These initiatives would result in changing the roles of existing operators from manually controlling cement manufacturing to primarily performance monitoring and maintenance.

However, during a 2-day pilot phase workshop in one of the factories to communicate the complete digital vision and concept, the limitations of cloud-based operations became prominent due to volume of data, available bandwidth and required latency.

The change team was comprised of personnel with a good blend of experience in manufacturing, technology and business, so it quickly comprehended the situation and extended the workshop to a third day to develop alternative solutions with factory personnel. Also, they included new participants from the innovation department and technology suppliers, who attended via video conferencing. The management accepted the change of plans since they were already trained in making agile responses to new circumstances by continuously prioritizing new demands instead of adhering to classic business KPIs. As an outcome, edge-based solutions were developed by the workshop participants which could be easily implemented and were more effective. The change team also made necessary adjustments in the overall concept to include this alternative.

“Agility in adapting to  new circumstances in new situations beats rigid plans.  It is not the strongest who survives, but the one who adapts the fastest to new environments.” according to Charles Darwin


  1. Adapted digital roadmap based  on technology changes by 
    1. Having a flexible concept in the first place  and a process to update 
    1. Updating concept based on new information
  2. Adapted the change measures  immediately when needed by 
    1. Prolonging the workshop by an additional day given the new developments 
    1. Identifying and adding right participants and using digital technology to participate, since travel was not possible on such short notice 
    1. Accepting a way of measuring success outside of business KPIs that focus on scope, costs and delivery time, and also considering agile ones that measure the flexibility of the development process
  3. Adapted technology design plans  immediately based on feedback by 
    1. Changing cloud-based operations to  edge applications

The above practices demonstrate the agile approach to Change Management. An agile approach corresponds to developing flexible strategies and plans, and continuously adapting them while already implementing them. This contrasts with a traditional approach that would involve setting fixed goals, detailed upfront planning and rigorous implementation towards a fixed target state.

The evolving nature of digital transformations renders classic Change Management approaches ineffective. The change in digital transformations follows an iterative journey.


Fixed target state : Clearly outlined target state  such as in a carve-out, merger, restructuring, etc. with planned and certain milestones

Top-down push of vision : Vision defined by senior leadership with negligible awareness or participation  from operational staff

One-time change effort : Change effort along  pre-defined predictable  one-way journey towards  target state

Evolving target state : Changing technologies, processes, business models  and roles lead to a continuously evolving target state

Enterprise-wide impact : Changes in technologies, processes, business models  and roles have an effect  across multiple functions

Continuous change effort : Continuous adaptation required due to changing technologies, processes, business models  and roles


The following three cases illustrate potential adaptations to the set of classic change levers based on real events. Each case is a unique event  and shows how responsible change  leaders react differently but effectively using the adapted levers.


Several attempts by a leading European utilities provider to launch software products failed. Coming from an electrical hardware manufacturing world where 100% quality is a must-have prior to release, taking a more future-proof 80/20 approach to launching digital products was not in the organization’s DNA.

In an innovative initiative headed by the Chief Digital Officer (CDO), a new unit was created with a different branding and location to separate a group of willing, open-minded venture and software developers from the traditional organization. The venture developers were a blend of juniors (~five years of work experience) and experienced professionals.

Selected software developers from this unit were also sent to a different location for training by external partners. The training mode was agile, in which a developer and a trainer sat side-by-side in front of a computer for live coaching on software development. Although there was feedback on the relative performance of the developers, the CDO backed all of them strongly during the training.

Post training, the developers came back with new approaches to training and scaled up their knowledge across the entire unit. For example, the sales reps were trained differently in a 2-day workshop, where the reps were given demonstrations by software developers, followed by the reps providing live demonstrations to potential customers. The entire training process was recorded and served as further guidance for improvement for the reps.

Some of the software developers were also given additional administrative roles in the unit. Within 12 weeks of program launch, the new software-based service was launched successfully – a first for the “traditional” utility company.

See you in next blog with the following topics :

  • Empower people to makequick decisions
  • Coaches multiply your chances of success


Kadıköy, İstanbul – TURKEY

Author : M. Temel AYGÜN, Ph. D. in Aerospace Eng.

Copyright belongs to author.

Korona sonrası neler olabilir – 4 – by Futurist Numan Bayrak

Kargo firmaları hızla kendilerini yenilemeli, yoksa yeni oyuncuların ortaya çıkması an meselesi gözüküyor.

Korona ile birlikte internetten satışlar patladı ama verilen siparişleri yerine teslim edecek kargo altyapısıda patladı.

Hızlı ve dinamik çözümler için yapılan çalışmalarda, kargonun en kısa sürede yerine ulaştırılması için drone kargoların devreye girmesini bekliyorduk orta vadede. Ama şimdi dron kargoların daha kısa sürede devreye gireceğini bekyebiliriz.

Tabiiki özellikle drone konusunda atılımda olan ülkemiz için bu ilginç bir fırsat olacak. Drone ehliyeti kursları ve drone sürücü belge kanun ve yönetmelikleride büyük olasılıkla hazırlanıyordur diye umuyorum.

Her şehrin belirli alanlarında öncelikle drone havaalanları açılacak. Bu drone aktarma merkezleri bir çeşit eski Harem Garı gibi , İstanbul Kadıköy Drone Alanı açılacak. Bu Drone alanlarına gelen giden kargolar diğer şehir veya semt alanlarına aktarılacak.

Bu alanlarda konumlanan klasik motor kuryeler, gelen giden kargoları yerlerine ulaştırmaya devam edecekler ilk etapta.

Yeni iş alanları olarak,

Drone Aktarma Merkez Projelendirme ofisleri

Drone Aktarma Merkez İşletimi yazılımı ve uygulamaları

Drone mobil ve diz üstü bilgisayar uygulamaları

Drone Tamicileri

Drone Yedek Parça Merkezlari

Drone Büfeler

Drone Alan Müdürü

Drone Alan Güvenlikçileri

Bu drone kargo aktarma merkezleri ile artan drone kullanımının yan etkileride olacak; zaten farklı ülkelerde başlayan bina dışı temizleme, badana boya işleri drone boyacı ve drone temizlikçiler tarafından yapılmaya başlanacak.

Yazın tatil belgelerinde drone kavun dondurmacı servise başlayacak. Teknelerinde insanlar alışverişlerini drone sepetlerini gönderdikleri marketlerden yapacaklar veya marketler tersine bu yerlere kendi drone kargolarıyla servis vermeye başlayacaklar.

Drone paparaziler devreye girdiğinde dünya gözetleme evine dönecek. Gizli saklı iş yapmak gittikçe zorlaşacak ve bunun etkisiyle dronlardan korunmak için drone engelleme programları veya aletleri icat edilecek.

Seni takip eden bir dronu vurmak ve düşürmek , kendini savunmak mı yoksa başkasının malına zarar vermek mi sorusu hukukçuları meşgul edecek. Yasa koyucular detaylı bir drone kullanım kuralları üzerine yasa ve yönetmelikleri hızla çıkarmak zorunda kalacaklar.

Drone kaza sigortası nasıl olacak? Zorunlu drone sigortası ve drone kaskosu ayrı ayrı ele alınacağı gibi üçüncü şahıslara zarar vermeyide sigortalamak gerekecek.

Drone sigortacılığı,

Drone Avukatları

Drone Bilirkişileri

Yunus Polislerimiz gibi , Kartal Drone Polis ekipleri kurulacak. Kartal Drone ekipleri ile Yunus Motorize ekipler eşgüdümlü çalışacaklar.

Drone trafiğini kontrol ve düzenlemek için yazılımcılar ve bu yazılımı kullanacak trafik polisleri muhtemelen oturdukları evlerden bu işleri yapacaklar.

Bu olanaklar , bizi sosyal izolasyona zorlayan korona ile ortaya çıkmaya başladı başlayacak. Bu sayede sıkışık şehir yaşamından daha geniş ve seyrek insan yoğunluğu olan alanlarda yaşamayı seçecek insanların yaşamlarını kolaylaştırcak.

Ucuzlayacak ve hızlanacak olan tedarik zinciri özelleşmeye başlayacak ; insanların fiilen geldiği toplu ürünlerin olduğu marketlerden , herkese bireysel olarak ulaşabilen çevrimiçi marketlere değişim tedariğin şeklinide değiştiriyor, değiştirecek.

Hızla beklentilerimiz farklılaşacağı için buna uyum gösteren yıkıcı yapıcı devrimsel hizmet ve türevleri öne çıkmaya devam edecek.

Evet “İCAT ÇIKARMAK” herkese lazım, yoksa bu tren bile değil , kaçırılmaması gereken bir roket tren.

Binmesi zor ama kaçırması kolay bir tren.

Altınova, Ayvalık, Türkiye


Author/ Yazan : Numan Bayrak

Copyright belongs to Author


How Change Management helps you to hold course

“We live in times in which digitalization is radically changing the business landscape across industries. To remain competitive, businesses around the world  are increasingly investing in digital transformation.”

The failure rates of digital transformations remain high. These failures largely stem from the unique challenges associated with digital transformation, including shifting from the current culture to a more digital, entrepreneurial one, dealing with a lack of digital talent, working in cross- functional teams where silos have been the norm, meeting accelerated timelines due to higher customer expectations, and accepting evolving target states instead of fixed goals. What most business leaders underestimate is that digital transformation is not just about technology: Above all, it is about people. That makes it complex – thus requiring a  new approach for managing the change.

From our experience with digitalization topics, we have  identified three key imperatives in successful digital transformations. These imperatives have shaped our Integrated Change Management methodology:

  1. Instituting an integrated approach across facts – i.e., tangible elements such as technology, processes and social interactions – i.e., intangible elements such as culture and teams throughout  the transformation journey and across the entire company
  2. Living agile by proactively updating change measures to meet both current needs and  overall objectives effectively
  3. Adapting “classic” Change Management levers such as communication, leadership, team setup, training, etc. for digitalization needs

This paper analyzes real cases to provide a deeper, more practical understanding of how digital transformation  can be a success story with the help of Integrated Change  Management. At the end of the paper, you will find insights as well as key recommendations to start your own digital transformation journey with confidence.

“Change Management  is a top 3 concern among executives when entering digital transformation  projects.”

“Digital transformation?  It’s all about the people!”


We live in times in which digitalization is radically changing the business landscape across industries. Companies worldwide are facing the challenge of managing the fast and repetitive adaptation of their organizations to suit the volatile circumstances of the digital age. Sooner or later, your business may also be faced with a disruption.

The worldwide digital transformation market is estimated to grow by 20% annually to USD 2 trillion by 2022, from the current size of USD 1.2 trillion, driven by the prospect of significant benefits in customer experience, time-to-market, product quality and operational reliability. However, the failure rates of digital transformation initiatives lie in the range of 60% to 85%. It is perfectly understandable that business leaders are quite uncertain when it comes to digital transformation in general, and about Change Management in particular.

The top challenges we often hear from  business leaders about digital transformations are

  1. CULTURE : There is a lack of openness to digitalization, sometimes even pushback from traditional entities. It takes time for both leadership and employees to adopt the necessary information-sharing mentality and cope with continuously changing conditions.
  2. DIGITAL TALENT : It is difficult to attract the right talent to execute the transformation or fill in new roles. New and existing employees need to grow together and work toward the same goals across the entire organization.
  3. SPEED : There is a need to progress quickly in an environment that lacks complete clarity. Encouraging people to speed up and make their own decisions can subject them to stress.
  4. EVOLVING TARGET STATE : Unlike traditional transformations, the target state continuously evolves due to changes in technologies, processes and roles.  The flexibility required for this approach with its “fail fast, fail often” mentality contradicts the common 100% quality approach of many traditional organizations.
  5. CROSS-FUNCTIONALITY : The impact of digitalization across interconnected business processes is not fully understood. Breaking down silos and linking formerly independent functions often leads to turmoil.

Does this sound familiar to you? A lot of business leaders we spoke with see the need for launching a digital transformation soon in order to prevent being outperformed by their competitors. However, they do not know how to prepare their organizations and employees for what is to come. Therefore, it is not surprising that 46% of interviewed C-level leaders report that Change Management is among their top three concerns when initiating digital transformation projects. They acknowledge that the only way to remain competitive is to create a wholehearted acceptance of digitalization within an organization. Because ultimately, people build up your business, not machines.


“Starting a digital transformation journey without a dedicated focus on Change Management is like  leaving the safe harbor with no knowledge of how  to sail through turbulent waters. Only when a mast cracks and the waves get rough do you notice that you forgot to manage the complex interplays.

To reach your desired destination with a sailboat, you need the basic equipment as visualized on the left. Facts such as technology and processes as well as social interactions influenced for example by culture and teams serve as the sails. Transformation management acts as the boat’s hull to provide the platform and a reliable structure for sailing the transformation in the right direction.

However, to master the challenges of a tough environment with troubled waters, skilled skippers adhere to three imperatives: Align both sails to benefit from the joint forces that quickly drive a boat forward, use a robust, yet flexible boat hull to hold course, and adapt the tools available on board to react to changing conditions.

Keeping the essence of these analogies and our experience with digitalization projects in mind, we created our Integrated Change Management approach to help you navigate your digital transformation journey:


From our experience in digitalization topics, we have identified the three following key imperatives for Change Management in  successful digital transformations:

  1. INSTITUTE AN INTEGRATED APPROACH TO CHANGE MANAGEMENT by incorporating tangible facts with the intangible social interactions throughout the digital trans- formation journey – from conception to implementation.
  2. LIVE AN AGILE CHANGE MANAGEMENT APPROACH given the context of technology  and people challenges that lead to evolving  target states. Humans often behave and react in unpredictable ways. Hence, Change Management must anticipate and adapt to changing situations to remain effective. Agile means being flexible  at all times to address current needs without compromising the vision.
  3. ADAPT CLASSIC CHANGE MANAGEMENT LEVERS TO THE CONTEXT OF DIGITALIZATION. The set  of levers for Change Management – comprised  of leadership, teams, culture, change story, communication, training, role transitioning  and learning organization – remain the same  but should be tuned to the requirements of digitalization.

See you in next blog with the following topics :

  • Institute an integrated approach to change management
  • Live an agile change management approach
  • Adapt classic change managment levers to the context of digitalization


Kadıköy, İstanbul – TURKEY

Author : M. Temel AYGÜN, Ph. D. in Aerospace Eng.

Copyright belongs to Author

Determining the target condition – Value Stream Design 4.0 by Space Dreamer (Author :M.Temel AYGUN)

VSD 4.0 serves the designing of the target condition for the future order-processing process including the associated information flows. In the first step, the approach comprises the traditional VSD, which aims to bring products into flow in order to achieve short throughput times. In the second step, there is a check of which stations can be further stabilized and designed to contain less waste through digitalization in order to improve or expand the product flow.

Finally, in a third step, the product and information flows are integrated and synchronized. The basic rule is that initially it should be striven for a robust flow based on process stability instead of digitalizing complex and inherently instable processes.

Execution of traditional VSD

Through VSD, a value stream vision is developed that preferably satisfies the previously formulated targets regarding throughput time, quality, productivity, etc. The approach was established following Rother [6], who describes value stream guidelines. The use of these guidelines results in workstations and processes being capable to fulfill a given work content within the scope of customer takt time allowance. Subsequently, adjoining processes can  be linked with one another to create the largest flow areas possible. Within those “islands of flow” a product or order can be further processed without waiting times. If processes cannot be directly linked (e.g. due to setup times  or different cycle times), they need to be decoupled through pull systems (FIFO systems or supermarkets). The authorization of new orders preferably takes place in one place, the so-called pacemaker process.

Digitally improving product flow

If a value stream vision has been developed in this way, implementation projects are defined that develop the current value stream step-bystep towards this vision. Typically, these projects first address traditional wastes. Fundamental projects are the introduction of standard work and the stabilization of quality. Subsequently, projects follow that bring about the improvement of the material flow, e.g. the line balancing of flow lines, the development of flow layouts, or the organization of a pull-material supply.

Subsequently, digital improvement opportunities through the following questions can be checked systematically:

  • Which traditional wastes can be better eliminated through digital measures? Example: The use of flexible pick-by technologies if material trays are too inflexible for zero-defect commissioning.
  • Which wastes in information logistics can be eliminated by a better organization? Example: Figures and their recording are unified for all machines in a group and used in the morning meeting for the target/actual comparison.
  • Which wastes in information logistics should be eliminated through digital measures? Example: The data for machine availability is recorded directly to the machine control instead of a manual transmission to MES.

Finally, there should be a check of which performance characteristics of the formulated busines model can be supported by the digitalization of the order processing.  Example questions could be:

  • How can the flow be further improved by automating manual planning steps that are repeated for every order?
  • At which point do configurators help in automatically translating customer requests into process parameters?
  • How can the product automatically parameterize work stations in order to further decrease setup times and support standard work?
  • Where does it make sense to assign process data to the product and make them available to the customer?

Integrating the product and process information flow

In the last step of VSD 4.0 the information defined, which is needed (product, process, and resource information) at the stations of the new value stream to implement the vision of order processing without waiting times. To start processes at a station without delay, all required information must be available at the beginning of the order. With this goal, the information needs of all processes are assessed and recorded as ”activities” in the process boxes. The same applies to the support processes like work preparation, intralogistics and maintenance.

Linking of information sources  and storage media

Based on the definition of future informational needs, suitable storage media are defined in cooperation with production-oriented IT and inscribed in the value stream map with the respective horizontal lines. Through vertical lines and the placement of points, a clear and standardized assignment of information sources to storage media takes place. For example, in this step it can be determined that, in the future, all quantity reports are automatically collected in MES. To show this, a vertical line from the data point “quantity” is drawn to the line of the storage medium MES and connected with a point.

In this final step, all activities that use available information are attached by dashed lines. For example, it is determined that the output quantity of every station available in MES is discussed daily in the course of shop floor management in order to recognize deviations and initiate improvements. From data point “quantity”, a dashed line is therefore drawn to the horizontal line of shop floor management and also connected with a point.     

Example application of VSD 4.0

For the already exemplarily observed value stream of the special machine manufacturer, the objective of value stream design is to significantly reduce the cycle-time whilst offering simultaneously high flexibility in the configuration for sales and customers. This is essentially achieved through

  • consistent digitalization of information sharing from the customer all the way to the machines
  • a drastic reduction in manual process steps and the associated processing time (from 6.5 h to 15 min)
  • a reduction of storage media (from 12 to 7) and media disruptions

The new process in detail

On the customer side, an online configurator was implemented that depicts the solution spaces possible in production in the dimensions categories, materials, and measurements. In this way, it is possible for the customer to configure and order the product without further communication with sales or development. The product data generated through the configurator is automatically transmitted to a parameterizable CNC code generator. The new CNC program arrives directly at the machine through the Distributed Numerical Control (DNC).

Until now, the order authorization took place through a push principle. The foreman planed the sequence of the orders according to demand and his own judgement (Go-and-see planning). In the course of VSD 4.0, strict FIFO pull processing now takes place (Fig. 20).

In order to stabilize and further improve the new processes, the figures delivery performance and capacity utilization are discussed in future daily shop floor meetings. In the event of deviations the PDCA cycle is started.


Kadıköy, İstanbul – TURKEY

M. Temel AYGÜN, Ph. D. in Aerospace Eng.

Copyright belongs to author.

Korona sonrası neler olabilir – 3 – by Futurist Numan Bayrak

Ülkemiz adına sevindirci gelişmelere şahit oluyoruz ve olacağız. Bir müsibet bin nasihatten iyidir ata sözünün gerçekleşmesini görmek hem üzüntü verici hemde sevindirici.

” İkra” kutsal kitabımız Kuran-ı Kerimin ilk sözlerinden dir ve bunun gündeme gelmesi için Korona gibi bir belanın olmasına gerek yoktu aslında.

“İlim Çin’de bile olsa gidiniz.” diye ne güzel söylemiş peygamberimiz Hazreti Muhammed.Evet Korona belası bizide ilme olan ihtiyacı farketmemiz için vesile oldu, oluyor ve olacak.

16 günde solunum cihazı yapabilen bir ülkemiz ve insan potansiyelimiz olan bir cennete sahip iken, ithalat cenneti olmayı seçmek ve hatta bunu devlet politikası haline getirmek zaten sürdürülebilir değildi.

Şimdi sıra hedeflenen 1 milyon kodlama yazan genci yetiştirip, onları teknoloji kümelerinde toplamak ve onların çarpan etkisiyle 5 milyon yabancı yazılım uzmanını Türkiye’ye çekecek Teknoloji Cennetleri yaratmak olmalı hedefimiz.

Sosyal izolasyon ile gelişecek yeni servis modelleri ve iş olanakları için hazır olmalı gençlerimiz.

Drone Cleaner yani Dron Temizlikçi dönemi hızla gelecek. Her belediye birer DKM ( Dron Kontrol Merkezi ) kuracak. Bu DKM lerde Dron sürücüleri (DS ) konumlanacak ve mahalle mahalle sokak sokak 7/24 temizlik yapacak dronları sürecekler, yönetecekler.

Dron Sürücü Kursları (DSK) yönetmeliği hızla hazırlanacak ve kamu ile özel Dron Sürücüleri yetiştirilecek ve Dron Sürücü Belgeleri verilecek.

Tabiiki bu arada var olan Dron üreten ve AR_GE çalışmaları yapan firmalarımız çeşitli boyut ve işlevde dronları geliştirme ve üretme konusunda hızla yol alacaklar. Zaten başlamış olmalılar diye düşünsek yanlış olmaz sanırım.

Dron ilaç uygalamaları için Eczacılar Birliği toplanmış ve evlere dron ile ilaç dağıtımı konusunu gündemine almış olmaları , kimseyi şaşırtmayacak. Zaten telefon ile başlayan aile hekimlerinin ilaç yazması uygulaması ile raporlu olan ilaçların otomatik eczaneler tarafından verilmesi uygulaması başladı. O zaman o ilaçların eczanelerden alınması yerine dronlarla hastanın evine teslim edilmesi de normal bir uygulama olacaktır.

Aile hekimi demişken , aile hekimine gidip rutin ilaç yazdırma işlemi yerine, doktorun internetten e-posta veya zoom/skype ortamında hastasıyla konuşması veya haberleşmesi de yeni normallerden olacaktır. O arada hastaya Tansiyonunu ölçüp e-posta yazması veya göstermesi, ateşini ölçüp bilgilendirmesinide isteyebilecektir Aile Hekimi.

Evlerimizde aile hekiminin bilgisayarıyla konuşabilen tansiyon ölçer, ateş ölçer, EKG çeken, kan şekeri ölçen, kan ve idrar tahlili yapan apartlar zaten her evin standart alet edevatından olacak. tabiiki benzer bilgiler o kişinin izin verdiği çocuklarının cep telefonlarına otomatik olarak bildirilecek ve bakıma muhtaç veya kontrol edilmesi istenen kişiler online yani anlık canlı olarak sağlık bilgilerini isterlerse paylaşabilecekler.

Özellikle en önemli konu olan hasta olan veya düzenli ilaç kullanmaları gereken kişilerin, almaları gereken ilaçları almamaları önemli bir sorun biliyorsunuz. Ama yakında böyle bir sorun olmayacak çünkü ; ilaçların her birine konacak nano sensörler sayesinde her bir ilaç izlenebilir olacak, o insan ilacı almadığında uyarı gönderecek ve kullanıldığında midede çözülünce de ayrı bir sinyal gönderecek. Proje takibi gibi güncel ve anlık olarak ilaç tüketimi takibi yapılabilecek.

Bu yukarıda saydıklarımızın bir çoğu üretiliyor veya arge çalışmaları bitmiş durumda.

İşte Koronanın yıkıcı yapıcı etkisi ( Disruptive constructive affect ) dedikleri bu olacak.

Anlık internet üzerinden başlayan psikolojik danışmanlıklar yaygınlaşacak ve bunu normal doktor muayeneleri takip edecek. İsmine dron doktor mu diyeceğiz, sanal doktor mu diyeceğiz bilmiyorum ama sosyal mesafeyi koruyarak maksimum hizmeti veren sağlıkçılar , sağlık kuruluşları ve ülkeler bir adım öne geçecekler. Çünkü bu sağlığa ulaşımı da demokratikleştirecek.

İşte burada Alan Musk’ın Starlink projesinin önemi bir kat daha artmış oluyor. Bilmem takip ediyor musunuz ama Starlink projesi ile her ay 60 adet uydu fırlatılıyor ve yakında 15 günde bir 60 uydu atılacak. Peki kaç uydu atılması planlanıyor? 1950 den bugüne 9500 civarında uydu atıldığını da not ederek düşünün bakalım?* (Cevabı yazımın en altına ekledim.).

Neden önemli çünkü 2030 yılına gelmeden internet bütün dünyada bedava olmasını hedefliyor Alan Musk. Üstelik var olan internet hızının onlarca kat hızlı ve onlarca kat az yatırım maliyetli bir çözümle. Evet çok önemli olacak bu hız ve bedava internet yukarıda konuştuğumuz nesnelerin interneti yani neslerin birbirleriyle konuşması için altyapıyı dahada güçlü bir şekilde hazırlamış olacak.

Tek yapmamız gerek hayal etmek, hayallerimize doğru yürümek değil koşmak.

Bunun için tembelliği bırakmamız ve Alan Musk gibi günde 16-18 saat çalışmalıyız.

Peygamberimiz Hazreti Muhammed’in sözüyle bugünkü yazımızı sonlandırıyorum;

“İlmin yarısı soru sormaktır.”

  • Sadece Alan Musk’ın 2030 a kadar yani 10 yıl içinde atacağı uydu sayısı 12 000 adet ( On iki bin adet ) !!!!

Altınova, Balıkesir, Türkiye


Yazar/ Author : Numan Bayrak

Copyrigths belongs to Author

Execution of the Value Stream Analysis 4 by Space Dreamer -10-

Author : M.Temel AYGUN

Starting the project & defining added value

Before the start of the project, the product or product family is determined, which is going to be analyzed. A product family is a group of products that occupies the same or similar resources in production and order processing. The VSA 4.0 is carried out for the entire order processing process. Therefore, the project team must also be assembled cross-departmentally. Employees from marketing, sales and adjustment development should especially be integrated.

At the beginning it should be clarified which product characteristics are especially important for customers and how they are created today. This helps refine one’s awareness for non-value-adding activities in the VSA. At the same time it is to define, what the value stream has to accomplish in the future in order to establish a striving competitive advantage (e.g. “…we deliver faster than…”, “…free product configuration…”) and to realize the planned business model. Then a clear target should be set by management which KPIs should be improved for the selected product group (e.g. reduce order throughput time to X days, reduce First Time Failure Rate to Y ppm, etc.) to achieve the desired competitive advantage. This makes it easier for the project team to prioritize improvement opportunities. In this way, improvement ideas can already be thought up by the team during the analysis phase to shape the future state vision.

Analyze the current state –  Value Stream Analysis 4.0

The traditional VSA initially creates an overarching understanding of the value stream for all involved. The result is a value stream representation with visualized areas of potential, the  Kaizen flashes. The familiar process boxes from the VSA are first extended upon in the VSA 4.0 in such a way that the collected information sources can be represented in extended notation. The type of data collection is characterized by the collection interval and its type of recording. At the same time, the respective current value is determined and inscribed in the process box. This notation should be used as uniformly as possible across all processes.

Understanding and incorporating storage media for information

To make the handling of data and information transparent, horizontal lines for each used storage medium are now delineated on the value stream map below the process boxes. Examples of storage media are paper, ERP systems, MES or MS Excel®, as well as the employees themselves. Next step is the analysis and representation of the information flows from the sources to the storage media. Therefore, information sources are affiliated with the associated storage media through vertical lines and nodal points.   

Analyzing the use of information

Subsequently, there is a review of which applications the collected information is used for, e.g. in quality management, for order control, or for shop floor management. For every type of usage, just like for storage media, horizontal lines are inscribed. Information sources, in turn, are subsequently affiliated with the applications through vertical (in this case, dashed) lines and points. Here it already becomes evident as to which collected information will not be used or will be used differently than intended.    

Recording wastes in information logistics In this step, the already introduced wastes in information logistics are recorded for all processes and inscribed as Kaizen flashes. Furthermore, the observed level of waste in dealing with information can be quantified by means of figures. As an example, here three figures are specified:

  • Data availability: It answers the question what percentage of necessary information/figures is actually being recorded.
  • Data usage: It shows what percentage of the recorded information sources is actually subsequently used.
  • Digitalization rate: It discloses what percentage of the recorded information sources is digitally recorded.

These figures can be calculated for a single workstation, a line or the entire order throughput.

Example application of VSA 4.0

The example shows a portion of the value stream of a special machine manufacturer, which extends from customer contact all the way to production (Fig. 17). Though products are individually adjusted in size and material depending on the customer’s application the order-specific information processing (customer clarification, adaptation of drawing, CNC programming) is basically the same for every customer project. The programming time for an order amounts to approx. 30 minutes and ultimately represents an implementation of the customer’s desired product parameters in a CNC code.

The following wastes arise from the traditional value stream analysis:

  • Frequent questions from construction to sales
  • Machine downtime during programming
  • Rejects due to programming errors

The application of VSA 4.0 provides further insights:

  • To exchange data and information, twelve different storage media are necessary (number of horizontal lines).
  • The high number of nodal points on the vertical lines of the data exchange indicates that process steps use several storage media for the same information.

Additional wastes arise from this, e.g.:

  • Employees must transmit information from different systems and with different formats by hand.
  • Media disruptions hinder the smooth flow of information and extend the processing time.

The figures confirm the findings and demonstrate additional potential for improvement: 

  • The data availability of the key performance indicators desired by management, such as processing time, quantity, etc. is 0 % for all processes.
  • None of the recorded information is being used in order to push forward an improvement of the value stream (undermost horizontal line). The data usage figure is therefore 0 %.
  • The digitalization rate in the value stream is  0 %, since paper is the storage medium used in different forms for every exchange of information.

Quick order processing through the synchronization of information flows

The traditional VSD aims to reduce the throughput time of a product by eliminating non-valueadding activities. Information is considered mainly from the process control perspective. This doesn’t sufficiently take into account the comprehensive, new opportunities for the use of information through digitalization and networking. Companies in mechanical engineering must consider further information flows beside the information for process control in order to be able to supply customers quickly and flexibly, improve processes, and increase the customer value through information-based services. Four information flows can be recognized that must mesh together in synchronization:

The product flow represents the physical flow of material. In production, this coincides with the product information flow (see below), partly from the flow of suppliers.

The utilities flow controls the provision and transport of necessary operating and auxiliary materials for the execution of an order.

The process information flow comprises information about the condition of production and all supporting processes (like processing time, force, temperature, pressure, etc.).

The product information flow comprises all information about the product. It begins with the customer but leads through development (e.g. drafting of drawing) and work preparation (e.g. programs, work plans) all the way to logistics, production and to the customer.

If one of the four information flows comes to a halt or is not synchronized with the other flows, delays can result due to waiting times. In order to avoid this, a synchronization of these information flows should be ensured. This is especially demanding in production, as all four flows encounter one another here. At a workstation, the work and testing instructions must be available at the same time as the physical product, the tools, fixtures and measurement devices, and the necessary process parameters configured. In addition, the customer is to be linked to the in-house information flows in order to accelerate order clarification, adaptation development and work preparation, but also to receive product information from the usage phase.  

See you in next blog with the following topics :

  • Determining the target condition –  Value Stream Design 4.0
  • Digitally improving product flow
  • The new process in detail


Kadıköy, İstanbul – TURKEY

M. Temel AYGÜN, Ph. D. in Aerospace Eng.

Copyright belongs to Author.

The path to a lean, digital value stream by Space Dreamer – 9 –

The path to a lean, digital value stream

Author : Mehmet Temel Aygün

The customer-individualized project business is formative for many companies in mechanical engineering. An exemplary analysis of the throughput times of orders of a manufacturer of customer-individualized machine components shows that the largest proportion of time goes towards development and parts procurement, followed by customer contact during project clarification and in the context of delivery and commissioning. The product only spends a small portion of time (4% in the example) in production. It can be assumed that a similar time distribution can be observed in many companies in the industry.

Today, the Value Stream Method is the standard in many companies that want to improve their product flow, reduce inventory, and decrease throughput times. The method’s focus is mostly on the parts and product flow from supplier to  customer. Information flows are essentially regarded from the perspective of production control and its improvement.

The extended Value Stream Method

If the objective, however, is to satisfy individualized customer requests quickly, flexibly, and,  at the same time, efficiently, only considering production, material flows, and the associated control information falls short. For this reason, in the following, the focus of the traditional Value Stream Method will be extended to all areas involved in order processing, including the customer. Furthermore, the information within the scope of this method will be considered from three new perspectives:

  • Waste in handling information
  • Use of information for process improvement
  • Use of information to increase customer value

A look at waste in handling information

Lean activities typically aim for eliminating transport, inventory, movement, waiting time, overproduction, over-fulfilling processes, and defects. These traditional types of waste provide support in the analysis of material flows and production itself, but they cannot be transferred directly to information flows. In order to holistically recognize wastes and potential in handling information, a new perspective is necessary. Following material logistics, the term information logistics is therefore introduced. For this, the goal is formulated to provide information at the right time, at the right place, in the right amount, and of the proper quality and ultimately to be used in a target-oriented manner. This should take place with as little waste as possible.

Within the scope of a Value Stream Analysis 4.0, eight types of waste in information logistics are introduced that emerge along the lifecycle of information and can be assigned to defined phases. A cycle consists of three phases:  

  • Data generation and transmission
  • Data processing and storage
  • Data usage

The individual types of waste in information logistics are clarified in the following by guiding questions. 

Phase of data generation  and data transmission

The goal during data generation and transmission is to make the desired data available in the proper quality. Wastes can occur in the:

Data selection

  • Has a purpose been designated?
  • Is clearly defined what the data will be used for?

Data quality

  • Do the frequency and level of detail of the collection fit with the intended use?
  • Has the data been collected and transmitted in a standardized manner?  

Data collection

  • Is the collection of data appropriate with regard to the costs and benefit?
  • Is the regular collection of data automated?

Data transmission

  • Does an interface-free communication of data take place?
  • Is the data stored centrally?

Phase of data processing and storage

Data and the resulting information should be processed continuously and without waiting time in order to be available for decisions or activities. Wastes can be:

Waiting times and inventory

  • Can an order not be processed because information is missing?
  • Is data and information available at exactly the right time?

Transport, movement and searching

  • Can employees find the required information without searching effort?
  • Is the presentation medium suitable?

Data usage

The data compacted into information is to be used purposefully, either for order processing, for the improvement of processes, or to increase to product’s value. product value The following wastes can arise:

Data analysis

  • Is the recorded data analyzed with appropriate methods?
  • Are these analyses used?

Decision-making support

  • Is the data verifiably used for decisions or improvement activities?
  • Is the information processed in accordance with its use? 

Value Stream Method 4.0 

Through the Value Stream Method 4.0, all product and information flows of a value stream are analyzed and designed.  It comprises the Value Stream Analysis 4.0 (VSA 4.0) and the alue Stream Design 4.0 (VSD 4.0). The approach extends across departments from the first customer contact all the way to the shipment of the product. The goal of the method is to develop all processes of a value stream in such a way that customer requests can be satisfied quickly, flexibly and thereby efficiently. The emphasis here is on the simultaneous consideration and synchronization of product and information flows.

Approach in three steps – an overview

Step A – Define added value

The starting point of the Value Stream Method 4.0 lies in obtaining a basic understanding of what generates customer value. This refines one’s awareness during the search for wastes

Step B – Analyze the current state

Within the scope of the traditional VSA, process data, inventory, and control information are recorded and so-called “Kaizen flashes” (improvement opportunities) are delineated. The scope of the VSA 4.0 is extended to the entire order-processing, begins with the first customer contact, and goes all the way until product usage. A detailed observation of the information flow follows during the order cycle. It targets wastes that emerge during the handling, transport and usage of data and information (so-called wastes in information logistics).   

Step C – Determine the future state

Only a fundamentally stable and, with regard to material flow, lean value stream should be digitally supported or digitally valorized. Therefore, the traditional VSD, with its design rules, continues to remain the first step to the digital target condition. The resulting value stream vision is improved through the targeted use of digitalization solutions in order to stabilize or expand the flow, or to eliminate process steps. The VSD 4.0 focuses on the integration of product flows and the necessary information flows as well as on elaborating a consistent implementation in  IT systems.

See you in next blog with the following topics :

  • Execution of the Value Stream Analysis 4.0


Kadıköy, İstanbul – TURKEY

M. Temel AYGÜN, Ph. D. in Aerospace Eng.

Copyright is Author’s.

Lean & Industry 4.0 part 4 by Space Dreamer – 8

Author : M.Temel AYGUN

Takt, Flow, Pull

The customer takt is the average time that passes between the shipment of individual products of a product group. The closer and more stable process steps can follow the customer takt, the more closely they can be connected, the less unproductive waiting times occur and the better the material flows.

“Pull” means that material movements or orders are only authorized or started by a demand of internal or external customers. Within the scope of flow and pull, the customer takt synchronizes the activities of all parties involved in the value stream so that they intertwine with as little waste as possible.

Limits of Takt, Flow, Pull: If products are very different with regards to their work content and bills of material and if their demand fluctuates strongly, then determining a customer takt is very demanding or even impossible. The stronger the fluctuation of the work content within a product group, the more demanding it will be to economically organize flow lines with takt. Also, big machines and systems can only be moved between stations with great effort, which is why they are often constructed at the location. At the level of the production material, pull control according to the supermarket principle can only be economically implemented for materials that have a regular consumption and a not too high value.

Opportunities through  digitalization and Industrie 4.0

  • Opportunity 1:  Reducing cycle times through an improved flow of information: In project business, a value stream analysis should take place from the first contact with the customer all the way to the maintenance of a product. Thereby, special focus should be on idle times and waiting times due to missing information (authorizations, documents, programs, etc.). Here, the following rule applies: No order may wait due to missing information. The necessary extension of the value stream focus to production-related areas (work preparation, order planning, logistics) provides valuable new insights. Subsequently, unused information is to be eliminated and the measurement, transfer, and provision of necessary information is to be improved through digitalization.
  • Opportunity 2:  Aligning material logistics with demand: Inventory at workstations and lines can be reduced if transport orders for material are only triggered by a pull signal from the line itself (e.g. via MES). Here, the release of productions orders is to be treated separately from the authorization of the transport orders. For large assembly works the request for retrieval of the material can take place in this way in accordance with the assembly progress through appropriate terminals at the assembly site. A better levelling of the workload in logistical areas is the result.

Logistical elements like supermarkets or FIFO (First-In-First-Out) lanes can be made more flexible through digital support.For example, by dynamically adapting inventory to demand and supply patterns. eKanban helps reduce inventory by a faster transmission of information. Milk run systems (e.g. routes) can be dynamically adapted to the current demand. The drivers of a milk run train are to be shown all necessary information in order to guarantee the shortest routes and to avoid mistakes. Automated guided vehicle systems also find application here.

  • Opportunity 3:  Utilizing assembly lines in a better way: By adapting the workstations, a larger spectrum of different products can be economically assembled at the same stations. Here, the ability of products to identify themselves at workstations (so-called active traceability) proves helpful. It is conceivable that a product configures its own work instructions, triggers the picking of its individual materials, or ensures that the workstation is digitally supplied (the product controls the process) with the suitable process data (e.g. torque, NC program codes, test programs, etc.).
  • Opportunity 4:  Recognizing bottlenecks early on: Through the networked representation of the information from critical reporting points and a tracing of materials along a supply chain, bottlenecks can be recognized early on and countermeasures can be taken before serious disturbances occur.

Autonomation / Jidoka 

Autonomation / Jidoka pursues the goal of developing processes that allow only to produce good parts. This should be achieved through mistake-proof devices (Japanese: Poka Yoke) as well as through a workstation design that guarantees zero defects (so called “built-in quality”). In case of problems occurring they should be reliably recognized by machines or employees, which usually triggers a defined escalation process that can lead all the way to the stop page of production (reactive improvement cycle). It is important to ensure a short feedback loop to the location of an error, so that containment can start quickly and a problem analysis can be carried out with fresh and reliable information. This is the prerequisite for short-term protection of the customer and a sustainable problem solution.

Limits of Autonomation / Jidoka: If small quantities of different products are produced at the same workstation, often a 100% avoidance of error through devices cannot be achieved with acceptable effort. Without a clear specification of process parameters, work steps and expected work progress, the recognition of deviations is hindered. Escalation cascades (who reacts until when?) do not work safely, if they are defined at all. If a problem is nevertheless identified, measures are first taken against the effect of a problem. A systematic, causal problem solution is often omitted, so that a problem can reoccur. However, if a systematic approach is taken, problem analysis is often sloppy because associated process information is missing or can only be obtained with a great deal of effort. This leads to inadequate measures or prolongs the problem-solving process.

Opportunities through  digitalization and Industrie 4.0

  • Opportunity 1: Increasing safeguard against improper mishandling (production): Where hardware solutions are too inflexible to handle variety, improper handling and mistakes during execution can be prevented through software-based solutions. Products that identify themselves when registering for a process (e.g. at a screw or test station) can initiate the configuration of devices, tools, and work instructions specific to them. Digital worker assistance systems show work documents and steps via a monitor or data glasses. The movements of a person can be followed through ultrasound or camera systems and compared with the expected procedure in order to intervene in the event of deviations. In this way, mistake-proofing processes can finally be achieved by a softwaresupported, adaptive Poka Yoke.
  • Opportunity 2: Avoiding improper handling in information flow: In areas that are upstream or downstream of production (e.g. development, work preparation, or shipping), IT system discontinuities are to be avoided that can lead to the error-prone transmission of data and waiting times. Generally, in these areas all activities with mainly repetitive character are to be critically scrutinized.    
  • Opportunity 3: Solving problems more effectively: Through component identification and backtracking, product and process information can be comprehensively interwoven. Defective products can be better narrowed down. Also, the location of the emergence of an error can be found faster and problems can be described more fully.    
  • Opportunity 4: From reacting to preventing defects: The linking of process data with deviations allows for the training of systems. In this way, conditions in the future can be forecasted based on current process data. The residual lifespan of tools or components for instance,can be determined. In several cases, problems can be proactively recognized and solved without defects emerging. This results in a reduced rate of rejects and rework.

Continuous Improvement Process (CIP)

The reduction of non-value-adding activities forms the core of a lean system. Improvement activities are either reactively initiated through deviations from target conditions or proactively created through the provision of newer, more demanding goals. The underlying approach of improvement follows the PDCA cycle. Deviations from standards or gaps to targets initiate the PDCA cycle anew every day. Employees solve the underlying problems and ideally thereby improve both their processes and their own problem solving skills.

Limits of Continuous Improvement Process: Occurring problems may have already been solved elsewhere in the same or a similar form. Often the team lacks knowledge of these solutions which could shorten the problem solving process. If the problem complexity is underestimated and an appropriate problem analysis remains undone, then the cause-effect-chain will not be traced back to the root cause. In consequence the defined measures very likely won’t address the root cause. Such a process can only effectively solve “simple” problems. The more complex problems are, the more spread out the activities of the PDCA cycle across multiple employees and departments. This complicates the pursuit of deadlines and results on the action plan and the probability increases that the PDCA cycle is only undergone incompletely. Typically, a measure is only partially implemented (Plan & Do), the necessary success monitoring on-site remains undone (Check), and the improvement approach “peters out” with time.

Opportunities through  digitalization and Industrie 4.0

  • Opportunity 1: Transparency in the tracking of improvement measures: Software-based action plans help to more easily track the progress of individual measures and to increase transparency through the allocation of tasks amongst employees and between different departments. At the same time, they help to ensure the complete execution of a PDCA cycle.
  • Opportunity 2: Improving knowledge management: The digital documentation of successful problem solutions and their implementation can take place through databases (e.g. in the form of a Wiki system). The opportunity for a networked search for these activities can prevent the same problem or similar problems from being solved twice. 
  • Opportunity 3: Better recognizing complex connections: The process data that belongs to a deviation or a defect can be automatically integrated into a systematic problem analysis and clearly depicted. In this way, the team receives a better foundation for the subsequent search for the cause. 

The stated opportunities can, for example,  be realized through digital Shop Floor Management.

See you in next blog with the following topics :

  • The path to a lean, digital value stream
  • A look at waste in handling information
  • Value Stream Method 4.0 


Kadıköy, İstanbul – TURKEY

M. Temel AYGÜN, Ph. D. in Aerospace Eng.